Properties of Complex Numbers

 OVERVIEW

A complex number satisfy 11 properties. 5 properties are concerning addition, 5 are concerning multiplication and 1 are mixed of both.
{x+iy is written as (x,y)}

1) PROPERTIES USING ADDITION

I)Binary Composition:- If  Z1 & Z2 are complex number, ZZ2  be a complex numbers.
Example:- If (2,3) and (4,5) are complex numbers.
 (2+4,3+5)=(6,8) is a complex numbers.(proved)

II) Commutative Law:- If  Z1 & Z2 are complex number,
 ZZ2 =  Z2 Z1 
Example:- If (2,3) and (4,5) are complex numbers.
(2+4,3+5)=(6,8)---LHS
(4+2,5+3)=(6,8)---RHS
LHS=RHS (proved)

III) Associative Law:- If  Z1 , Z2 & Z3 are complex number,
( ZZ2)+ Z3 Z+( Z2+ Z3)
Example:- If (2,3),(4,5) and (6,7) are complex numbers.
{(2,3)+(4+5)}+(6,7)=(6,8)+(6,7)=(12,15)---LHS
(2,3)+{(4+5)+(6,7)}=(2,3)+(10,12)=(12,15)---RHS
LHS=RHS (proved)

IV) Additive Identity :- If  Z is any complex number, there is a unique complex number (0,0) such that 
Z+0=0+Z=Z

Example:- If (2,3) and (4,5) are complex numbers.
(1)(2,3)+(0,0)=(0,0)+(2,3)=(2,3)
(2)(4,5)+(0,0)=(0,0)+(4,5)=(4,5)

V)Additive Inverse :- If  Z is any complex number, there is a unique complex number (-Z) such that 
Z+(-Z)=(-Z)+Z=0
Example:- If (2,3) and (4,5) are complex numbers.
(1)(2,3)+(-2,-3)=(-2,-3)+(2,3)=(0,0)
(2)(4,5)+(-4,-5)=(-4,-5)+(4,5)=(0,0)

2) PROPERTIES USING MULTIPLICATION

I)Binary Composition:- If  Z1 & Z2 are complex number, Z1*Z2  be a complex numbers .
Example:-If (9,10) & (1,2) is a complex number.
(9,10)*(1,2)={(9*1-10*2),(9*2+10*1)}=(-11,28) is a complex number

II) Commutative Law :- If  Z1 & Z2 are complex number,
Z1*Z2 =  Z2*Z1 
Example:-If (9,10) & (1,2) is a complex number.
(9,10)*(1,2)={(9*1-10*2),(9*2+10*1)}=(-11,28)---LHS
(1,2)*(9,10)=(1*9-2*10),{(2*9+1*10)}=(-11,28)---RHS
LHS=RHS [Proved]

III) Associative Law:- If  Z1 , Z2 & Z3 are complex number,
( Z1*Z2)*Z3 Z1*( Z2*Z3)
Example:-If (9,10),(1,2) & (4,5) is a complex number.
{(9,10)*(1,2)}*(4,5)=(-11,28)*(4,5)=(-184,57)---LHS
(9,10)*{(1,2)*(4,5)}=(9,10)*(-6,13)=(-184,57)---RHS
LHS=RHS [Proved]

IV) Multiplicative Identity :- If  Z is any complex number, there is a unique complex number 1 such that 
Z*1=1*Z=Z
Example:-If (1,2) is a complex number.
(1,2)*(0,1)=(1,2)----LHS
(0,1)*(1,2)=(1,2)---RHS
LHS=RHS[Proved]

V)Multiplicative Inverse :- If  Z(≠0) is any complex number, there is a unique complex number  Z-1 such that 
Z*Z-1=Z-1*Z=1

• Determination Of Multiplicative Inverse:-If  (a,b) is any complex number and (a1,b1)  is multiplicative inverse of this complex number.
(a,b)*(a1,b1)=(1,0)
ax - by=1
ay + bx=0
The value of  (a1,b1) is  [{a/(a2+b2)},{-b/(a2+b2)}]
[∵(a,b)≠0 ,∴ (a2+b2)≠0 ]
Example:-If (1,2) is a complex number. Multiplicative Inverse is (1/5,2/5)
(1,2)*(1/5,2/5)=1---LHS
(1/5,2/5)*(1,2)=1---RHS
LHS=RHS[Proved]

3) MIX PROPERTIES 

I) Distributive Law:- If  Z1 , Z2 & Z3 are complex number,
( Z1+Z2)*Z3 (Z1*Z2)+(Z2*Z3)
Example:- If (2,3),(4,5) and (6,7) are complex numbers.
{(2,3)+(4,5)}*(6,7)=(6,8)*(6,7)=(-20,90)---LHS
{(2,3)*(6,7}+{(4,5)*(6,7)}=(-9,32)*(-11,58)=(-20,90)---RHS
LHS=RHS [Proved]

THANK YOU FOR READING

Comments